Published in

Springer Verlag (Germany), Journal of High Energy Physics, 02(2003), p. 038-038

DOI: 10.1088/1126-6708/2003/02/038

Links

Tools

Export citation

Search in Google Scholar

Nonlinear Self-Duality and Supergravity

Journal article published in 2002 by Sergei M. Kuzenko, Shane A. McCarthy ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The concept of self-dual supersymmetric nonlinear electrodynamics is generalized to a curved superspace of N = 1 supergravity, for both the old minimal and the new minimal versions of N = 1 supergravity. We derive the self-duality equation, which has to be satisfied by the action functional of any U(1) duality invariant model of a massless vector multiplet, and construct a family of self-dual nonlinear models. This family includes a curved superspace extension of the N = 1 super Born-Infeld action. The supercurrent and supertrace in such models are proved to be duality invariant. The most interesting and unexpected result is that the requirement of nonlinear self-duality yields nontrivial couplings of the vector multiplet to Kahler sigma models. We explicitly derive the couplings to general Kahler sigma models in the case when the matter chiral multiplets are inert under the duality rotations, and more specifically to the dilaton-axion chiral multiplet when the group of duality rotations is enhanced to SL(2,R). Comment: 15 pages, latex. V2: proof of the duality invariance of the supercurrent completed, a reference added, typos corrected; V3: typos in eqs. (2.24) and (2.39) corrected