Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, The Journal of Infectious Diseases, 3(223), p. 471-481, 2020

DOI: 10.1093/infdis/jiaa379

Links

Tools

Export citation

Search in Google Scholar

Blood Bacterial Profiles Associated With Human Immunodeficiency Virus Infection and Immune Recovery

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Human immunodeficiency virus (HIV) infection impairs mucosal immunity and leads to bacterial translocation, fueling chronic inflammation and disease progression. While this is well established, questions remain about the compositional profile of the translocated bacteria, and to what extent it is influenced by antiretroviral therapy (ART). Using 16S ribosomal DNA targeted sequencing and shotgun proteomics, we showed that HIV increases bacterial translocation from the gut to the blood. HIV increased alpha diversity in the blood, which was dominated by aerobic bacteria belonging to Micrococcaceae (Actinobacteria) and Pseudomonadaceae (Proteobacteria) families, and the number of circulating bacterial proteins was also increased. Forty-eight weeks of ART attenuated this phenomenon. We found that enrichment with Lactobacillales order, and depletion of Actinobacteria class and Moraxellaceae and Corynebacteriacae families, were significantly associated with greater immune recovery and correlated with several inflammatory markers. Our findings suggest that the molecular cross talk between the host and the translocated bacterial products could influence ART-mediated immune recovery.