Published in

Optica, Optics Letters, 15(45), p. 4168, 2020

DOI: 10.1364/ol.397935

Links

Tools

Export citation

Search in Google Scholar

Terahertz Phase Retrieval Imaging in Reflection

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Terahertz phase retrieval is a promising technique able to assess the complex diffracted wave properties through an iterative processing algorithm. In this Letter, we demonstrate the implementation of this technique in reflection geometry with a continuous wave acquisition system working at 0.287 THz. To ensure a high signal-to-noise ratio in the measured dataset, we proposed a double parallel recording scheme with one detector and two lock-in amplifiers operating with the complimentary sensitivity setting. This provided a higher numerical aperture than conventional raster-scanning focal plane imaging. A specialized digital interferometric postprocessing procedure was applied to obtain a surface height map from the reconstructed phase distribution in the object’s irradiated area.