Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Express, 14(28), p. 19926, 2020

DOI: 10.1364/oe.394491

Links

Tools

Export citation

Search in Google Scholar

Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

High-Q Si ring resonators play an important role in the development of widely tunable heterogeneously integrated lasers. However, while a high Q-factor (Q > 1 million) is important for ring resonators in a laser cavity, the parasitic high-power density in a Si resonator can deteriorate the laser performance at high power levels due to nonlinear loss. Here, we experimentally show that this detrimental effect can happen at moderate power levels (a few milliwatts) where typical heterogeneously integrated lasers work. We further compare different ring resonators, including extended Si ring resonators and Si3N4 ring resonators and provide practical approaches to minimize this effect. Our results provide explanations and guidelines for high-Q ring resonator designs in heterogeneously integrated tunable lasers, and they are also applicable for hybrid integrated butt-coupled lasers.