Published in

American Meteorological Society, Journal of Hydrometeorology, 3(4), p. 530-543

DOI: 10.1175/1525-7541(2003)004<0530:eroshi>2.0.co;2

Links

Tools

Export citation

Search in Google Scholar

Explicit representation of subgrid heterogeneity in a GCM land surface scheme

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Permission to place copies of these works on this server has been provided by the American Meteorological Society (AMS). The AMS does not guarantee that the copies provided here are accurate copies of the published work. © Copyright 2003 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use†under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org. ; A land surface scheme that may be run with or without a tiled representation of subgrid heterogeneity and includes an implicit atmospheric coupling scheme is described. Simulated average surface air temperatures and diurnal temperature ranges in a GCM using this surface model are compared with climatology. Surface tiling is not found to give a clear improvement in the simulated climate but offers more flexibility in the representation of heterogeneous land surface processes. Using the same meteorological forcing in offline simulations using versions of the surface model with and without tiling, the tiled model gives slightly lower winter temperatures at high latitudes and higher summer temperatures at midlatitudes. When the surface model is coupled to a GCM, reduced evaporation in the tiled version leads to changes in cloud cover and radiation at the surface that enhance these differences.