Published in

American Association of Immunologists, The Journal of Immunology, 2(205), p. 511-520, 2020

DOI: 10.4049/jimmunol.1900816

Links

Tools

Export citation

Search in Google Scholar

Double-Hit–Induced Leukocyte Extravasation Driven by Endothelial Adherens Junction Destabilization

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract During inflammation, endothelial cells are bombarded with cytokines and other stimuli from surrounding cells. Leukocyte extravasation and vascular leakage are both prominent but believed to be uncoupled as they occur in separate spatiotemporal patterns. In this study, we investigated a “double-hit” approach on primary human endothelial cells primed with LPS followed by histamine. Using neutrophil transendothelial migration (TEM) under physiological flow assays, we found that an LPS-primed endothelium synergistically enhanced neutrophil TEM when additionally treated with histamine, whereas the effects on neutrophil TEM of the individual stimuli were moderate to undetectable. Interestingly, the double-hit–induced TEM increase was not due to decreased endothelial barrier, increased adhesion molecule expression, or Weibel–Palade body release. Instead, we found that it was directly correlated with junctional remodeling. Compounds that increased junctional “linearity” (i.e., stability) counteracted the double-hit effect on neutrophil TEM. We conclude that a compound, in this case histamine (which has a short primary effect on vascular permeability), can have severe secondary effects on neutrophil TEM in combination with an inflammatory stimulus. This effect is due to synergic modifications of the endothelial cytoskeleton and junctional remodeling. Therefore, we hypothesize that junctional linearity is a better and more predictive readout than endothelial resistance for compounds aiming to attenuate inflammation.