Published in

American Society for Microbiology, Journal of Virology, 17(94), 2020

DOI: 10.1128/jvi.00752-20

Links

Tools

Export citation

Search in Google Scholar

A genome-wide CRISPR-Cas9 screen reveals the requirement of host cell sulfation for Schmallenberg virus infection

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

SBV is a newly emerging orthobunyavirus (family Peribunyaviridae ) that has spread rapidly across Europe since 2011, resulting in substantial economic losses in livestock farming. In this study, we performed unbiased genome-wide CRISPR-Cas9 screening and identified PAPST1, a sulfotransferase encoded by SLC35B2 , as a host entry factor for SBV. Consistent with its role in the synthesis of heparan sulfate, we show that this activity is required for efficient infection by SBV. A comparable dependency on heparan sulfate was also observed for La Crosse virus and Rift Valley fever virus, highlighting the importance of heparan sulfate for host cell infection by bunyaviruses. Thus, the present work provides crucial insights into virus-host interactions of important animal and human pathogens.