Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Journal of Physical Oceanography, 6(50), p. 1583-1604, 2020

DOI: 10.1175/jpo-d-19-0187.1

Links

Tools

Export citation

Search in Google Scholar

Spectral Modeling of Ice-Induced Wave Decay

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractThree dissipative (two viscoelastic and one viscous) ice models are implemented in the spectral wave model WAVEWATCH III to estimate the ice-induced wave attenuation rate. These models are then explored and intercompared through hindcasts of two field cases: one in the autumn Beaufort Sea in 2015 and the other in the Antarctic marginal ice zone (MIZ) in 2012. The capability of these dissipative models, along with their limitations and applicability to operational forecasts, are analyzed and discussed. The sensitivity of the simulated wave height to different source terms—the ice-induced wave decay Sice and other physical processes Sother (e.g., wind input, nonlinear four-wave interactions)—is also investigated. For the Antarctic MIZ experiment, Sother is found to be remarkably less than Sice and thus contributes little to the simulated significant wave height Hs. The saturation of dHs/dx at large wave heights in this case, as reported by a previous study, is well reproduced by the three dissipative ice models with or without the utilization of Sother in the ice-infested seas. A clear downward trend in the peak frequency fp is found as Hs increases. As fp decreases, the dominant wave components of a wave spectrum will experience reduced damping by sea ice, and finally result in the flattening of dHs/dx for Hs > 3 m in this specific case. Nonetheless, Sother should not be disregarded within a more general modeling perspective, as our simulations suggest Sother could be comparable to Sice in the Beaufort Sea case where wave and ice conditions are remarkably different.