Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(493), p. 5434-5455, 2020

DOI: 10.1093/mnras/staa604

Links

Tools

Export citation

Search in Google Scholar

The atomic hydrogen content of the post-reionization Universe

Journal article published in 2020 by Marta Spinelli ORCID, Anna Zoldan ORCID, Gabriella De Lucia ORCID, Lizhi Xie, Matteo Viel
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present a comprehensive analysis of atomic hydrogen (H i) properties using a semi-analytical model of galaxy formation and N-body simulations covering a large cosmological volume at high resolution. We examine the H i mass function and the H i density, characterizing both their redshift evolution and their dependence on hosting halo mass. We analyse the H i content of dark matter haloes in the local Universe and up to redshift z = 5, discussing the contribution of different galaxy properties. We find that different assembly history plays a crucial role in the scatter of this relation. We propose new fitting functions useful for constructing mock H i maps with halo occupation distribution techniques. We investigate the H i clustering properties relevant for future 21 cm intensity mapping (IM) experiments, including the H i bias and the shot-noise level. The H i bias increases with redshift and it is roughly flat on the largest scales probed. The scale dependence is found at progressively larger scales with increasing redshift, apart from a dip feature at z = 0. The shot-noise values are consistent with the ones inferred by independent studies, confirming that shot noise will not be a limiting factor for IM experiments. We detail the contribution from various galaxy properties on the H i power spectrum and their relation to the halo bias. We find that H i poor satellite galaxies play an important role at the scales of the one-halo term. Finally, we present the 21 cm signal in redshift space, a fundamental prediction to be tested against data from future radio telescopes such as Square Kilometre Array.