Published in

American Association for the Advancement of Science, Science, 6478(367), 2020

DOI: 10.1126/science.aay5516

Links

Tools

Export citation

Search in Google Scholar

Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A weird way to recognize phosphoantigens In contrast to the well-studied αβ T cells, which recognize peptide antigens presented by major histocompatibility complex (MHC) and MHC-like molecules, how γδ T cells recognize antigens remains largely a mystery. One major class of γδ T cells, designated Vγ9Vδ2 + , is activated by small, phosphorylated nonpeptide antigens, or phosphoantigens, produced by microbes and cancer cells. Rigau et al. found that these cells needed the combination of two immunoglobulin superfamily members, butyrophilin 2A1 (BTN2A1) and BTN3A1, on their cell surface to recognize these phosphoantigens. BTN2A1 directly binds the Vγ9 + domain of the T cell receptor (TCR), whereas a second ligand, potentially BTN3A1, binds the Vδ2 and γ-chain regions on the opposite side of the TCR. A better understanding of this unexpected form of T cell antigen recognition should inform and enhance future γδ T cell–mediated immunotherapies. Science , this issue p. eaay5516