Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6420(362), p. 1285-1288, 2018

DOI: 10.1126/science.aau3744

Links

Tools

Export citation

Search in Google Scholar

Evolution of a highly active and enantiospecific metalloenzyme from short peptides

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Evolution trains a from-scratch catalyst Metal-bound peptides can catalyze simple reactions such as ester hydrolysis and may have been the starting point for the evolution of modern enzymes. Studer et al. selected progressively more-proficient variants of a small protein derived from a computationally designed zinc-binding peptide. The resulting enzyme could perform the trained reaction at rates typical for naturally evolved enzymes and serendipitously developed a strong preference for a single enantiomer of the substrate. A structure of the final catalyst highlights how small, progressive changes can remodel both catalytic residues and protein architecture in unpredictable ways. Science , this issue p. 1285