Published in

MDPI, Plants, 1(9), p. 69, 2020

DOI: 10.3390/plants9010069

Links

Tools

Export citation

Search in Google Scholar

Phytic Acid and Transporters: What Can We Learn from low phytic acid Mutants?

Journal article published in 2020 by Roberto Pilu, Eleonora Cominelli ORCID, Francesca Sparvoli ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Phytic acid has two main roles in plant tissues: Storage of phosphorus and regulation of different cellular processes. From a nutritional point of view, it is considered an antinutritional compound because, being a cation chelator, its presence reduces mineral bioavailability from the diet. In recent decades, the development of low phytic acid (lpa) mutants has been an important goal for nutritional seed quality improvement, mainly in cereals and legumes. Different lpa mutations affect phytic acid biosynthetic genes. However, other lpa mutations isolated so far, affect genes coding for three classes of transporters: A specific group of ABCC type vacuolar transporters, putative sulfate transporters, and phosphate transporters. In the present review, we summarize advances in the characterization of these transporters in cereals and legumes. Particularly, we describe genes, proteins, and mutants for these different transporters, and we report data of in silico analysis aimed at identifying the putative orthologs in some other cereal and legume species. Finally, we comment on the advantage of using such types of mutants for crop biofortification and on their possible utility to unravel links between phosphorus and sulfur metabolism (phosphate and sulfate homeostasis crosstalk).