Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-57841-x

Links

Tools

Export citation

Search in Google Scholar

First in man study of [18F]fluoro-PEG-folate PET: a novel macrophage imaging technique to visualize rheumatoid arthritis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractNon-invasive imaging of arthritis activity in rheumatoid arthritis (RA) patients using macrophage PET holds promise for early diagnosis and therapeutic response monitoring. Previously obtained results with macrophage tracer (R)-[11C]PK11195 were encouraging, but the imaging signal could be further improved by reduction of background uptake. Recently, the novel macrophage tracer [18F]fluoro-PEG-folate was developed. This tracer showed excellent targeting of the folate receptor β on activated macrophages in synovial tissue in a preclinical arthritic rat model. We performed three substudies to investigate the biodistribution, potential for imaging arthritis and kinetic properties of [18F]fluoro-PEG-folate in RA patients. Firstly, biodistribution demonstrated fast clearance of [18F]fluoro-PEG-folate from heart and blood vessels and no dose limiting uptake in organs. Secondly, [18F]fluoro-PEG-folate showed uptake in arthritic joints with significantly lower background and hence significantly higher target-to-background ratios as compared to reference macrophage tracer (R)-[11C]PK11195. Lastly, dynamic scanning demonstrated fast tracer uptake in affected joints, reaching a plateau after 1 minute, co-existing with a rapid blood clearance. In conclusion, this first in man study demonstrates the potential of [18F]fluoro-PEG-folate to image arthritis activity in RA with favourable imaging characteristics of rapid clearance and low background uptake, that allow for detection of inflammatory activity in the whole body.