Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-57498-6

Links

Tools

Export citation

Search in Google Scholar

Variation among S-locus haplotypes and among stylar RNases in almond

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn many plant species, self-incompatibility systems limit self-pollination and mating among relatives. This helps maintain genetic diversity in natural populations but imposes constraints in agriculture and plant breeding. In almond [Prunus dulcis (Mill.) D.A. Webb], the specificity of self-incompatibility is mainly determined by stylar ribonuclease (S-RNase) and S-haplotype-specific F-box (SFB) proteins, both encoded within a complex locus, S. Prior to this research, a nearly complete sequence was available for one S-locus haplotype. Here, we report complete sequences for four haplotypes and partial sequences for 11 haplotypes. Haplotypes vary in sequences of genes (particularly S-RNase and SFB), distances between genes and numbers and positions of long terminal repeat transposons. Haplotype variation outside of the S-RNase and SFB genes may help maintain functionally important associations between S-RNase and SFB alleles. Fluorescence-based assays were developed to distinguish among some S-RNase alleles. With three-dimensional modelling of five S-RNase proteins, conserved active sites were identified and variation was observed in electrostatic potential and in the numbers, characteristics and positions of secondary structural elements, loop anchoring points and glycosylation sites. A hypervariable region on the protein surface and differences in the number, location and types of glycosylation sites may contribute to determining S-RNase specificity.