Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Forests, 1(11), p. 82, 2020

DOI: 10.3390/f11010082

Links

Tools

Export citation

Search in Google Scholar

Flux-Based Ozone Risk Assessment for a Plant Injury Index (PII) in Three European Cool-Temperate Deciduous Tree Species

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study investigated visible foliar ozone (O3) injury in three deciduous tree species with different growth patterns (indeterminate, Alnus glutinosa (L.) Gaertn.; intermediate, Sorbus aucuparia L.; and determinate, Vaccinium myrtillus L.) from May to August 2018. Ozone effects on the timing of injury onset and a plant injury index (PII) were investigated using two O3 indices, i.e., AOT40 (accumulative O3 exposure over 40 ppb during daylight hours) and PODY (phytotoxic O3 dose above a flux threshold of Y nmol m−2 s−1). A new parameterization for PODY estimation was developed for each species. Measurements were carried out in an O3 free-air controlled exposure (FACE) experiment with three levels of O3 treatment (ambient, AA; 1.5 × AA; and 2.0 × AA). Injury onset was found in May at 2.0 × AA in all three species and the timing of the onset was determined by the amount of stomatal O3 uptake. It required 4.0 mmol m−2 POD0 and 5.5 to 9.0 ppm·h AOT40. As a result, A. glutinosa with high stomatal conductance (gs) showed the earliest emergence of O3 visible injury among the three species. After the onset, O3 visible injury expanded to the plant level as confirmed by increased PII values. In A. glutinosa with indeterminate growth pattern, a new leaf formation alleviated the expansion of O3 visible injury at the plant level. V. myrtillus showed a dramatic increase of PII from June to July due to higher sensitivity to O3 in its flowering and fruiting stage. Ozone impacts on PII were better explained by the flux-based index, PODY, as compared with the exposure-based index, AOT40. The critical levels (CLs) corresponding to PII = 5 were 8.1 mmol m−2 POD7 in A. glutinosa, 22 mmol m−2 POD0 in S. aucuparia, and 5.8 mmol m−2 POD1 in V. myrtillus. The results highlight that the CLs for PII are species-specific. Establishing species-specific O3 flux-effect relationships should be key for a quantitative O3 risk assessment.