Published in

SAGE Publications, Journal of Dental Research, 3(99), p. 264-270, 2020

DOI: 10.1177/0022034519897910

Links

Tools

Export citation

Search in Google Scholar

Heritability of Caries Scores, Trajectories and Disease Subtypes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Previous studies report that dental caries is partially heritable, but there is uncertainty in the magnitude of genetic effects and little understanding of how genetic factors might influence caries progression or caries subtypes. This study aimed to estimate the relative importance of genetic and environmental factors in the etiology of different caries outcomes using a twin-based design. Analysis included up to 41,678 twins in the Swedish Twin Register aged 7 to 97 y, and dental data were obtained from preexisting dental records. The outcome measures were 1) summary indices of caries experience, 2) parameters representing trajectory in caries progression derived from longitudinal modeling, and 3) caries scores in groups of biologically similar tooth surfaces derived from hierarchical clustering of tooth surfaces (termed caries clusters). Additive genetic factors explained between 49.1% and 62.7% of variation in caries scores and between 50.0% and 60.5% of variation in caries trajectories. Seven caries clusters were identified, which had estimates of heritability lying between 41.9% and 54.3%. Shared environmental factors were important for only some of these clusters and explained 16% of variation in fissure caries in molar teeth but little variation in other clusters of caries presentation. The genetic factors influencing these clusters were only partially overlapping, suggesting that different biological processes are important in different groups of tooth surfaces and that innate liability to some patterns of caries presentation may partially explain why groups of tooth surfaces form clusters within the mouth. These results provide 1) improved quantification of genetic factors in the etiology of caries and 2) new data about the role of genetics in terms of longitudinal changes in caries status and specific patterns of disease presentation, and they may help lay the foundations for personalized interventions in the future.