Bentham Science Publishers, Current Computer Aided-Drug Design, 1(17), p. 123-133, 2021
DOI: 10.2174/1573409916666191226110029
Full text: Unavailable
Background: Studies on the interaction between bioactive molecules and HIV-1 virus have been the focus of recent research in the scope of medicinal chemistry and pharmacology. Objective: Investigating the structural parameters and physico-chemical properties of elucidating and identifying the antiviral pharmacophore sites. Methods: A mixed computational Petra/Osiris/Molinspiration/DFT (POM/DFT) based model has been developed for the identification of physico-chemical parameters governing the bioactivity of 22 3-hydroxy-indolin-2-one derivatives of diacetyl-L-tartaric acid and aromatic amines containing combined antiviral/antitumor/antibacterial pharmacophore sites. Molecular docking study was carried out with HIV-1 integrase (pdb ID: 5KGX) in order to provide information about interactions in the binding site of the enzyme. Results: The POM analyses of physico-chemical properties and geometrical parameters of compounds 3a-5j, show that they are bearing a two combined (O,O)-pockets leading to a special platform which is able to coordinate two transition metals. The increased activity of series 3a-5j, as compared to standard drugs, contains (Osp2,O sp3,O sp2)-pharmacophore site. The increase in bioactivity from 4b (R1, R2 = H, H) to 3d (R1, R2 = 4-Br, 2-OCH3) could be attributed to the existence of π-charge transfer from para-bromo-phenyl to its amid group (COδ---NHδ+). Similar to the indole-based reference ligand (pdb: 7SK), compound 3d forms hydrogen bonding interactions between the residues Glu170, Thr174 and His171 of HIV-1 integrase in the catalytic core domain of the enzyme. Conclusion: Study confirmed the importance of oxygen atoms, especially from the methoxy group of the phenyl ring, and electrophilic amide nitrogen atom for the formation of interactions.