Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 1(318), p. R1-R16, 2020

DOI: 10.1152/ajpregu.00145.2019

Links

Tools

Export citation

Search in Google Scholar

Prenatal metyrapone treatment modulates neonatal cerebrovascular structure, function, and vulnerability to mild hypoxic-ischemic injury

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study explored the hypothesis that late gestational reduction of corticosteroids transforms the cerebrovasculature and modulates postnatal vulnerability to mild hypoxic-ischemic (HI) injury. Four groups of Sprague-Dawley neonates were studied: 1) Sham-Control, 2) Sham-MET, 3) HI-Control, and 4) HI-MET. Metyrapone (MET), a corticosteroid synthesis inhibitor, was administered via drinking water from gestational day 11 to term. In Shams, MET administration 1) decreased reactivity of the hypothalamic-pituitary-adrenal (HPA) axis to surgical trauma in postnatal day 9 (P9) pups by 37%, 2) promoted cerebrovascular contractile differentiation in middle cerebral arteries (MCAs), 3) decreased compliance ≤46% and increased depolarization-induced calcium mobilization in MCAs by 28%, 4) mildly increased hemispheric cerebral edema by 5%, decreased neuronal degeneration by 66%, and increased astroglial and microglial activation by 10- and 4-fold, respectively, and 5) increased righting reflex times by 29%. Regarding HI, metyrapone-induced fetal transformation 1) diminished reactivity of the HPA axis to HI-induced stress in P9/P10 pups, 2) enhanced HI-induced contractile dedifferentiation in MCAs, 3) lessened the effects of HI on MCA compliance and calcium mobilization, 4) decreased HI-induced neuronal injury but unmasked regional HI-induced depression of microglial activation, and 5) attenuated the negative effects of HI on open-field exploration but enhanced the detrimental effects of HI on negative geotaxis responses by 79%. Overall, corticosteroids during gestation appear essential for normal cerebrovascular development and glial quiescence but induce persistent changes that in neonates manifest beneficially as preservation of postischemic contractile differentiation but detrimentally as worsened ischemic cerebrovascular compliance, increased ischemic neuronal injury, and compromised neurobehavior.