Published in

Future Medicine, Pharmacogenomics, 18(20), p. 1283-1290, 2019

DOI: 10.2217/pgs-2019-0101

Links

Tools

Export citation

Search in Google Scholar

Effects of pharmacogenetic variants on vemurafenib-related toxicities in patients with melanoma

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: The pharmacokinetics and pharmacodynamics of vemurafenib are characterized by a wide interpatient variability. Since multiple polymorphic enzymes and drug transporters are involved in vemurafenib pharmacokinetics, we studied associations of polymorphisms on vemurafenib-associated toxicities. Patients & methods: Prospectively collected samples of 97 melanoma patients treated with vemurafenib alone (n = 62) or in combination with cobimetinib (n = 35) were genotyped for ABCB1 (3435C>T), ABCG2 (421C>A, 34G>A) and CYP3A4 ( *22, 15389C>T) polymorphisms. Associations between these variants and the incidence of toxicities were studied. Results: CYP3A4*22 was significantly associated with increased risk for grade ≥3 nausea, grade 1–4 hyperbilirubinemia, and cutaneous squamous cell carcinoma. ABCB1 3435C>T was a predictor for grade ≥3 toxicity. Conclusion: Genetic variants in CYP3A4 and ABCB1 are associated with vemurafenib-associated toxicities.