Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Catalysts, 5(9), p. 432, 2019

DOI: 10.3390/catal9050432

Links

Tools

Export citation

Search in Google Scholar

Enhanced (−)-α-Bisabolol Productivity by Efficient Conversion of Mevalonate in Escherichia coli

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

(−)-α-Bisabolol, a naturally occurring sesquiterpene alcohol, has been used in pharmaceuticals and cosmetics owing to its beneficial effects on inflammation and skin healing. Previously, we reported the high production of (−)-α-bisabolol by fed-batch fermentation using engineered Escherichia coli (E. coli) expressing the exogenous mevalonate (MVA) pathway genes. The productivity of (−)-α-bisabolol must be improved before industrial application. Here, we report enhancement of initial (−)-α-bisabolol productivity to 3-fold higher than that observed in our previous study. We first harnessed a farnesyl pyrophosphate (FPP)-resistant mevalonate kinase 1 (MvaK1) from an archaeon Methanosarcina mazei (M. mazei) to create a more efficient heterologous MVA pathway that produces (−)-α-bisabolol in the engineered E. coli. The resulting strain produced 1.7-fold higher (−)-α-bisabolol relative to the strain expressing a feedback-inhibitory MvaK1 from Staphylococcus aureus (S. aureus). Next, to efficiently convert accumulated MVA to (−)-α-bisabolol, we additionally overexpressed genes involved in the lower MVA mevalonate pathway in E. coli containing the entire MVA pathway genes. (−)-α-Bisabolol production increased by 1.8-fold with reduction of MVA accumulation, relative to the control strain. Finally, we optimized the fermentation conditions including inducer concentration, aeration and enzymatic cofactor. The strain was able to produce 8.5 g/L of (−)-α-bisabolol with an initial productivity of 0.12 g/L h in the optimal fed-batch fermentation. Thus, the microbial production of (−)-α-bisabolol would be an economically viable bioprocess for its industrial application.