Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, IMA Journal of Numerical Analysis, 4(29), p. 937-959, 2008

DOI: 10.1093/imanum/drn022

Links

Tools

Export citation

Search in Google Scholar

Numerical approximation of corotational dumbbell models for dilute polymers

Journal article published in 2007 by John W. Barrett, Endre Suli ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We construct a general family of Galerkin methods for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier-Stokes equations in a bounded domain Ω in R d, d=2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function which satisfies a Fokker-Planck type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term. We focus on finitely-extensible nonlinear elastic, FENE-type, dumbbell models. In the case of a corotational drag term we perform a rigorous passage to the limit as the spatial and temporal discretization parameters tend to zero, and show that a (sub)sequence of numerical solutions converges to a weak solution of this coupled Navier-Stokes-Fokker-Planck system.