MDPI, Proceedings of the Royal Society of Victoria, 1(31), p. 46, 2019
DOI: 10.3390/proceedings2019031046
Full text: Download
Sleep scoring is an important tool for physicians. Assigning of segments of long biomedical signal into sleep stages is, however, a very time consuming, tedious and expensive task which is performed by an expert. Automatic sleep scoring is not well accepted in clinical practice because of low interactivity and unacceptable error, which is often caused by inter-patient variability. This is solved by proposing a semi-automatic approach, where parts of the signal are selected for manual labeling by active learning and the resulting classifier is used for automatic labeling of the remaining signal. The active learning is disturbed by noisy ambiguous data instances caused by continuous character of the sleep stage transitions and a removal of such transitional instances from the training set prior to active learning can improve the efficiency of the method. This paper proposes to use the hidden Markov model for the detection of the transitional instances. It shows experimentally on 35 sleep EEG recordings that such a method significantly improves the semi-automatic method. A complete methodology for semi-automatic sleep scoring is proposed and evaluated, which can be better accepted as a decision support tool for sleep scoring experts.