Published in

MDPI, Polymers, 11(11), p. 1739, 2019

DOI: 10.3390/polym11111739

Links

Tools

Export citation

Search in Google Scholar

Harnessing Deep-Hole Drilling to Fabricate Air-Structured Polymer Optical Fibres

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The performance of a precisely controlled drilling technique is critical in the fabrication process of microstructured polymer optical fibres. For the creation of a holey preform, adequate drilling bits with large length-to-diameter ratios provide the ability of machining preforms with complex structures and large lengths in a relatively short time. In this work, we analysed different drilling bits and techniques that can be employed for the creation of such preforms, and key parameters characterising the quality of the drilled holes, such as surface rugosity, diameter deviation, coaxiality and cylindricity were measured. For this purpose, based on theoretical simulations, four rings of air holes arranged in a hexagonal pattern were drilled in the preforms with different drill bits, and the experimental results for the above mentioned parameters have been presented. Additionally, optical power distribution of the fabricated microstructured polymer optical fibres was theoretically calculated and experimentally measured.