Published in

MDPI, Brain Sciences, 10(9), p. 264, 2019

DOI: 10.3390/brainsci9100264

Links

Tools

Export citation

Search in Google Scholar

Weight Change after Striatal/Capsule Deep Brain Stimulation Relates to Connectivity to the Bed Nucleus of the Stria Terminalis and Hypothalamus

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Weight changes are insufficiently understood adverse events of deep brain stimulation. In this context, exploring neural networks of weight control may inform novel treatment strategies for weight-related disorders. In this study, we investigated weight changes after deep brain stimulation of the ventral striatum/ventral capsule and to what extent changes are associated with connectivity to feeding-related networks. We retrospectively analyzed 25 patients undergoing deep brain stimulation for obsessive-compulsive disorder or substance dependency. Weight changes were assessed preoperatively and six to twelve months after surgery and then matched with individual stimulation sites and stimulation-dependent functional connectivity to a priori defined regions of interest that are involved in food intake. We observed a significant weight gain after six to twelve months of continuous stimulation. Weight increases were associated with medial/apical localization of stimulation sites and with connectivity to hypothalamic areas and the bed nucleus. Thus, deep brain stimulation of the ventral striatum/ventral capsule influences weight depending on localization and connectivity of stimulation sites. Bearing in mind the significance of weight-related disorders, we advocate further prospective studies investigating the neuroanatomical and neuropsychological underpinnings of food intake and their neuromodulatory therapeutic potential.