Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Forests, 7(10), p. 583, 2019

DOI: 10.3390/f10070583

Links

Tools

Export citation

Search in Google Scholar

Occurrence Prediction of the Citrus Flatid Planthopper (Metcalfa pruinosa (Say, 1830)) in South Korea Using a Random Forest Model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Invasive species cause a severe impact on existing ecosystems. The citrus flatid planthopper (CFP; Metcalfa pruinosa (Say, 1830)) is an invasive species in many countries. Predicting potential occurrence areas of the species related to environmental conditions is important for effective forest ecosystem management. In this study, we evaluated the occurrence patterns of the CFP and predicted its potential occurrence areas in South Korea using a random forest model for a hazard rating of forests considering meteorological and landscape variables. We obtained the occurrence data of the CFP in South Korea from literature and government documents and extracted seven environmental variables (altitude, slope, distance to road (geographical), annual mean temperature, minimum temperature in January, maximum temperature in July, and annual precipitation (meteorological)) and the proportion of land cover types across seven categories (urban, agriculture, forest, grassland, wetland, barren, and water) at each occurrence site from digital maps using a Geographic Information System. The CFP occurrence areas were mostly located at low altitudes, near roads and urbanized areas. Our prediction model also supported these results. The CFP has a high potential to be distributed over the whole of South Korea, excluding high mountainous areas. Finally, factors related to human activities, such as roads and urbanization, strongly influence the occurrence and dispersal of the CFP. Therefore, we propose that these factors should be considered carefully in monitoring and surveillance programs for the CFP and other invasive species.