Published in

MDPI, Molecules, 16(24), p. 2863, 2019

DOI: 10.3390/molecules24162863



Export citation

Search in Google Scholar

Validation of an LC-MS/MS Method for the Quantification of Caffeine and Theobromine Using Non-Matched Matrix Calibration Curve

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO


Caffeine is one of the most widely consumed psycho-stimulants. The study of the beneficial effects of caffeine consumption to decrease the risk of developing several neuropsychiatric pathologies is receiving increasing attention. Thus, accurate and sensitive methods have been developed, mainly by LC-MS/MS, in order to quantify caffeine and its metabolites. These quantifications of caffeine and its metabolites by LC-MS/MS require a considerable effort to select or find a surrogate matrix, without the compounds of interest, to be used in the calibration curves. Thus, we evaluated the possibility of using calibration curves prepared in solvent instead of calibration curves prepared in human plasma. Results show that the calibration curves prepared in solvent and in human plasma were similar by comparing their slopes and interceptions, and the accuracy and precision were within the limits of acceptance for both calibration curves. This work demonstrates that, by using internal standards, it is possible to use a calibration curve in solvent instead of a calibration curve in plasma to perform an accurate and precise quantification of caffeine and theobromine.