Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-46852-y

Links

Tools

Export citation

Search in Google Scholar

Discovery of a kleptoplastic ‘dinotom’ dinoflagellate and the unique nuclear dynamics of converting kleptoplastids to permanent plastids

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractA monophyletic group of dinoflagellates, called ‘dinotoms’, are known to possess evolutionarily intermediate plastids derived from diatoms. The diatoms maintain their nuclei, mitochondria, and the endoplasmic reticulum in addition with their plastids, while it has been observed that the host dinoflagellates retain the diatoms permanently by controlling diatom karyokinesis. Previously, we showed that dinotoms have repeatedly replaced their diatoms. Here, we show the process of replacements is at two different evolutionary stages in two closely related dinotoms, Durinskia capensis and D. kwazulunatalensis. We clarify that D. capensis is a kleptoplastic protist keeping its diatoms temporarily, only for two months. On the other hand, D. kwazulunatalensis is able to keep several diatoms permanently and exhibits unique dynamics to maintain the diatom nuclei: the nuclei change their morphologies into a complex string-shape alongside the plastids during interphase and these string-shaped nuclei then condense into multiple round nuclei when the host divides. These dynamics have been observed in other dinotoms that possess permanent diatoms, while they have never been observed in any other eukaryotes. We suggest that the establishment of this unique mechanism might be a critical step for dinotoms to be able to convert kleptoplastids into permanent plastids.