Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-45405-7

Links

Tools

Export citation

Search in Google Scholar

QR code micro-certified gemstones: femtosecond writing and Raman characterization in Diamond, Ruby and Sapphire

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThis paper reports on a micro-certification procedure using femtosecond laser irradiation to microscopically mark a single-crystalline gemological and natural diamond, synthetic ruby and synthetic sapphire, inscribing a QR Code on them. The QR-code was composed of a set of 25 × 25 micropoints, and the irradiation energy was optimized at 1kHz repetition rate. The code was made at a 20 µm relative depth into the gemstone surfaces by controlling the incident laser energy, that was set to 3 μJ for all the samples. Characterization by optical and electron microscopy, as well as micro-Raman hyperspectral imaging showed that the microdots have a diameter of about 14 µm perpendicular to the irradiation direction, being laterally spaced by 14 µm-18 µm applied for each sample. This work corroborates the feasibility of using ultrafast laser inscription technology to fabricate microdots with great quality on gemstone surfaces, which offers a great potential for the jewelry industry to safely micro-encrypt gemological certifications. The compositional and morphological characterization of the modified surface was carried by micro-Raman spectroscopy and scanning electron microscopy.