Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Stem Cells, 10(28), p. 1751-1759, 2010

DOI: 10.1002/stem.496

Links

Tools

Export citation

Search in Google Scholar

B-Myb is Critical for Proper DNA Duplication During an Unperturbed S Phase in Mouse Embryonic Stem Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract A common feature of early embryo cells from the inner cell mass (ICM) and of ESCs is an absolute dependence on an atypical cell cycle in which the G1 phase is shortened to preserve their self-renewing and pluripotent nature. The transcription factor B-Myb has been attributed a role in proliferation, in particular during the G2/M phases of the cell cycle. Intriguingly, B-Myb levels in ICM/ESCs are greater than 100 times compared with those in normal proliferating cells, suggesting a particularly important function for this transcription factor in pluripotent stem cells. B-Myb is essential for embryo development beyond the preimplantation stage, but its role in ICM/ESCs remains unclear. Using a combination of mouse genetics, single DNA fiber analyses and high-resolution three-dimensional (3D) imaging, we demonstrate that B-Myb has no influence on the expression of pluripotency factors, but instead B-Myb ablation leads to stalling of replication forks and superactivation of replication factories that result in disorganization of the replication program and an increase in double-strand breaks. These effects are partly due to aberrant transcriptional regulation of cell cycle proliferation factors, namely c-Myc and FoxM1, which dictate normal S phase progression. We conclude that B-Myb acts crucially during the S phase in ESCs by facilitating proper progression of replication, thereby protecting the cells from genomic damage. Our findings have particular relevance in the light of the potential therapeutic application of ESCs and the need to maintain their genomic integrity.