Published in

American Association of Neurological Surgeons, Journal of Neurosurgery, p. 1-11, 2020

DOI: 10.3171/2019.12.jns192010

Links

Tools

Export citation

Search in Google Scholar

Clinical outcomes of globus pallidus deep brain stimulation for Parkinson disease: a comparison of intraoperative MRI– and MER-guided lead placement

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVEDeep brain stimulation (DBS) lead placement is increasingly performed with the patient under general anesthesia by surgeons using intraoperative MRI (iMRI) guidance without microelectrode recording (MER) or macrostimulation. The authors assessed the accuracy of lead placement, safety, and motor outcomes in patients with Parkinson disease (PD) undergoing DBS lead placement into the globus pallidus internus (GPi) using iMRI or MER guidance.METHODSThe authors identified all patients with PD who underwent either MER- or iMRI-guided GPi-DBS lead placement at Emory University between July 2007 and August 2016. Lead placement accuracy and adverse events were determined for all patients. Clinical outcomes were assessed using the Unified Parkinson’s Disease Rating Scale (UPDRS) part III motor scores for patients completing 12 months of follow-up. The authors also assessed the levodopa-equivalent daily dose (LEDD) and stimulation parameters.RESULTSSeventy-seven patients were identified (MER, n = 28; iMRI, n = 49), in whom 131 leads were placed. The stereotactic accuracy of the surgical procedure with respect to the planned lead location was 1.94 ± 0.21 mm (mean ± SEM) (95% CI 1.54–2.34) with frame-based MER and 0.84 ± 0.007 mm (95% CI 0.69–0.98) with iMRI. The rate of serious complications was similar, at 6.9% for MER-guided DBS lead placement and 9.4% for iMRI-guided DBS lead placement (RR 0.71 [95% CI 0.13%–3.9%]; p = 0.695). Fifty-seven patients were included in clinical outcome analyses (MER, n = 16; iMRI, n = 41). Both groups had similar characteristics at baseline, although patients undergoing MER-guided DBS had a lower response on their baseline levodopa challenge (44.8% ± 5.4% [95% CI 33.2%–56.4%] vs 61.6% ± 2.1% [95% CI 57.4%–65.8%]; t = 3.558, p = 0.001). Greater improvement was seen following iMRI-guided lead placement (43.2% ± 3.5% [95% CI 36.2%–50.3%]) versus MER-guided lead placement (25.5% ± 6.7% [95% CI 11.1%–39.8%]; F = 5.835, p = 0.019). When UPDRS III motor scores were assessed only in the contralateral hemibody (per-lead analyses), the improvements remained significantly different (37.1% ± 7.2% [95% CI 22.2%–51.9%] and 50.0% ± 3.5% [95% CI 43.1%–56.9%] for MER- and iMRI-guided DBS lead placement, respectively). Both groups exhibited similar reductions in LEDDs (21.2% and 20.9%, respectively; F = 0.221, p = 0.640). The locations of all active contacts and the 2D radial distance from these to consensus coordinates for GPi-DBS lead placement (x, ±20; y, +2; and z, −4) did not differ statistically by type of surgery.CONCLUSIONSiMRI-guided GPi-DBS lead placement in PD patients was associated with significant improvement in clinical outcomes, comparable to those observed following MER-guided DBS lead placement. Furthermore, iMRI-guided DBS implantation produced a similar safety profile to that of the MER-guided procedure. As such, iMRI guidance is an alternative to MER guidance for patients undergoing GPi-DBS implantation for PD.