Published in

MDPI, Nutrients, 4(11), p. 915, 2019

DOI: 10.3390/nu11040915

Links

Tools

Export citation

Search in Google Scholar

Capsaicin Analogues Derived from n-3 Polyunsaturated Fatty Acids (PUFAs) Reduce Inflammatory Activity of Macrophages and Stimulate Insulin Secretion by β-Cells In Vitro

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study, two capsaicin analogues, N-eicosapentaenoyl vanillylamine (EPVA) and N-docosahexaenoyl vanillylamine (DHVA), were enzymatically synthesized from their corresponding n-3 long chain polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both dietary relevant components. The compounds significantly reduced the production of some lipopolysaccharide (LPS)-induced inflammatory mediators, including nitric oxide (NO), macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1 or CCL2), by RAW264.7 macrophages. Next to this, only EPVA increased insulin secretion by pancreatic INS-1 832/13 β-cells, while raising intracellular Ca2+ and ATP concentrations. This suggests that the stimulation of insulin release occurs through an increase in the intracellular ATP/ADP ratio in the first phase, while is calcium-mediated in the second phase. Although it is not yet known whether EPVA is endogenously produced, its potential therapeutic value for diabetes treatment merits further investigation.