Published in

American Society for Microbiology, Infection and Immunity, 11(80), p. 3858-3868, 2012

DOI: 10.1128/iai.00060-12

American Society for Microbiology, Infection and Immunity, 2(81), p. 618-618, 2013

DOI: 10.1128/iai.01164-12

Links

Tools

Export citation

Search in Google Scholar

Mannose-Capped Lipoarabinomannan from Mycobacterium tuberculosis Induces Soluble Tumor Necrosis Factor Receptor Production through Tumor Necrosis Factor Alpha-Converting Enzyme Activation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Primary Mycobacterium tuberculosis infection results in granuloma formation in lung tissue. A granuloma encapsulates mycobacterium-containing cells, thereby preventing dissemination and further infection. Tumor necrosis factor alpha (TNF-α) is a host-protective cytokine during M. tuberculosis infection due to its role in promoting and sustaining granuloma formation. TNF activity is regulated through the production of soluble TNF receptors (sTNFRI and sTNFRII). Therefore, we examined the potential production of endogenous sTNFRs during M. tuberculosis infection. Using the murine model of aerosol M. tuberculosis infection, we determined that levels of sTNFR production were elevated in bronchoalveolar lavage fluid 1 month following infection. An investigation of M. tuberculosis cell wall components identified that the known virulence factor mannose-capped lipoarabinomannan (ManLAM) was sufficient to induce sTNFR production, with sTNFRII being produced preferentially compared with sTNFRI. ManLAM stimulated the release of sTNFRs without TNF production, which corresponded to an increase in TNF-α-converting enzyme (TACE) activity. To determine the relevance of these findings, serum samples from M. tuberculosis -infected patients were tested and found to have an increase in the sTNFRII/sTNFRI ratio. These data identify a mechanism by which M. tuberculosis infection can promote the neutralization of TNF and furthermore suggest the potential use of the sTNFRII/sTNFRI ratio as an indicator of tuberculosis disease.