Published in

Public Library of Science, PLoS Genetics, 1(11), p. e1004877, 2015

DOI: 10.1371/journal.pgen.1004877

Links

Tools

Export citation

Search in Google Scholar

Antagonistic Cross-Regulation between Sox9 and Sox10 Controls an Anti-tumorigenic Program in Melanoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Melanoma is the most fatal skin cancer, but the etiology of this devastating disease is still poorly understood. Recently, the transcription factor Sox10 has been shown to promote both melanoma initiation and progression. Reducing SOX10 expression levels in human melanoma cells and in a genetic melanoma mouse model, efficiently abolishes tumorigenesis by inducing cell cycle exit and apoptosis. Here, we show that this anti-tumorigenic effect functionally involves SOX9, a factor related to SOX10 and upregulated in melanoma cells upon loss of SOX10. Unlike SOX10, SOX9 is not required for normal melanocyte stem cell function, the formation of hyperplastic lesions, and melanoma initiation. To the contrary, SOX9 overexpression results in cell cycle arrest, apoptosis, and a gene expression profile shared by melanoma cells with reduced SOX10 expression. Moreover, SOX9 binds to the SOX10 promoter and induces downregulation of SOX10 expression, revealing a feedback loop reinforcing the SOX10 low/SOX9 high ant,m/ii-tumorigenic program. Finally, SOX9 is required in vitro and in vivo for the anti-tumorigenic effect achieved by reducing SOX10 expression. Thus, SOX10 and SOX9 are functionally antagonistic regulators of melanoma development. Author Summary For the development of future cancer therapies it is imperative to understand the molecular processes underlying tumor initiation and expansion. Many key factors involved in these processes have been identified based on cell culture and transplantation experiments, but their relevance for tumor formation and disease progression in the living organism is often unclear. Therefore, genetically modified mice spontaneously developing tumors present indispensable models for cancer research. Here, we address this issue by studying the formation of melanoma, the most fatal skin tumor in industrialized countries. To this end, we use a transgenic mouse model to elucidate cellular and molecular mechanisms regulating congenital nevus and melanoma initiation. We show that a transcription factor called SOX10 promotes melanoma formation by repressing an anti-tumorigenic program involving the activity of a related factor, SOX9. When SOX10 is inactivated, SOX9 becomes upregulated and induces cell cycle arrest and death in melanoma cells. Furthermore, upon experimental elevation of SOX9 levels, SOX10 activity is suppressed, revealing an antagonistic relationship between SOX9 and SOX10 in melanoma initiation. Knowledge of how an anti-tumorigenic program can be stimulated by modulating the activities of these key factors might help to design novel therapeutic strategies.