Published in

American Scientific Publishers, Journal of Nanoscience and Nanotechnology, 6(20), p. 3576-3581, 2020

DOI: 10.1166/jnn.2020.17480

Links

Tools

Export citation

Search in Google Scholar

Tailoring the Seebeck Coefficient of Spray-Coated Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Films with Nitrogen Doped Multiwalled Carbon Nanotubes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The thermoelectric properties of flexible thin films fabricated from two commercial poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) formulations filled with multiwalled carbon nanotubes (MWCNT) and nitrogen-doped MWCNT (N-MWCNT) were investigated. A simple spray-coating method for the fabrication of such flexible films on a polyethylene terephthalate substrate was developed. While increasing the MWCNT concentration had little effect on the thermoelectric properties, increasing the N-MWCNT concentration resulted in the emergence of an overall n-type semiconducting behavior and, thereby, tailoring the Seebeck coefficient of the composite films from p-type to n-type was shown. The Seebeck coefficient of the two PEDOT:PSS formulation films was inverted from 4.1 to −13.3 μV/K and from 12.5 to −10.9 μV/K respectively, with increasing N-MWCNT concentration from 0 to 95 wt.%. The importance of these results for future work stems from the possibility of tailoring the behavior of a typical p-type polymer such as PEDOT:PSS and the effect that the polymer conductive grade has on the switching concentration.