Published in

De Gruyter, Journal of Basic and Clinical Physiology and Pharmacology, 1(31), 2019

DOI: 10.1515/jbcpp-2018-0225

Links

Tools

Export citation

Search in Google Scholar

Trehalose protects against spinal cord injury through regulating heat shock proteins 27 and 70 and caspase-3 genes expression

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Heat shock proteins (HSPs) are a class of highly conserved proteins responsible for various functions critical to cell survival. Pharmacological induction of HSPs has been implicated in the regulation of neuronal loss and functional deficits in peripheral and central nervous system injuries. Accordingly, the present study was conducted to investigate the effect of trehalose on spinal expression of HSP27, HSP70 and caspase-3 genes following traumatic spinal cord injury (SCI) in rats. Methods Male rats weighing 250–300 g underwent laminectomy and were divided into four groups including sham, SCI (received SCI), vehicle (received SCI and phosphate buffer saline intrathecally) and trehalose (received 10 mM trehalose intrathecally following SCI). On days 1, 3 and 7 after injury, HSP27, HSP70 and caspase-3 genes transcripts were quantified in spinal cord tissues via a real-time PCR technique. In addition, locomotor function was assessed using the Basso, Beattie and Bresnahan (BBB) rating scale. Results SCI induced the expression of HSP27, HSP70 and caspase-3 genes and BBB score at all time points. Trehalose treatment upregulated HSP27, HSP70 genes expression at 1 day after SCI. Interestingly, a significant reduction in the expression of HSP27 and HSP70 genes was observed on days 3 and 7 following trauma compared with the vehicle group (p < 0.01). Caspase-3 gene showed a decrease in expression in the trehalose-treated group at all times. In addition, neurological function revealed an improvement after treatment with trehalose. Conclusion This study suggests that the neuroprotective effect of trehalose is mediated via regulation of HSP27 and HSP70, which are involved in cytoprotection and functional recovery following SCI.