Published in

American Association of Neurological Surgeons, Journal of Neurosurgery, 5(131), p. 1369-1379, 2019

DOI: 10.3171/2018.7.jns18284

Links

Tools

Export citation

Search in Google Scholar

Targeting IL-13Rα2 for effective treatment of malignant peripheral nerve sheath tumors in mouse models

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVEMalignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas that harbor a high potential for metastasis and have a devastating prognosis. Combination chemoradiation aids in tumor control and decreases tumor recurrence but causes deleterious side effects and does not extend long-term survival. An effective treatment with limited toxicity and enhanced efficacy is critical for patients suffering from MPNSTs.METHODSThe authors recently identified that interleukin-13 receptor alpha 2 (IL-13Rα2) is overexpressed on MPNSTs and could serve as a precision-based target for delivery of chemotherapeutic agents. In the work reported here, a recombinant fusion molecule consisting of a mutant human IL-13 targeting moiety and a point mutant variant of Pseudomonas exotoxin A (IL-13.E13 K-PE4E) was utilized to treat MPNST in vitro in cell culture and in an in vivo murine model.RESULTSIL-13.E13 K-PE4E had a potent cytotoxic effect on MPNST cells in vitro. Furthermore, intratumoral administration of IL-13.E13 K-PE4E to orthotopically implanted MPNSTs decreased tumor burden 6-fold and 11-fold in late-stage and early-stage MPNST models, respectively. IL-13.E13 K-PE4E treatment also increased survival by 23 days in the early-stage MPNST model.CONCLUSIONSThe current MPNST treatment paradigm consists of 3 prongs: surgery, chemotherapy, and radiation, none of which, either singly or in combination, are curative or extend survival to a clinically meaningful degree. The results presented here provide the possibility of intratumoral therapy with a potent and highly tumor-specific cytotoxin as a fourth treatment prong with the potential to yield improved outcomes in patients with MPNSTs.