Published in

Nature Research, Nature Communications, 1(8), 2017

DOI: 10.1038/s41467-017-00934-5

Links

Tools

Export citation

Search in Google Scholar

Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

Journal article published in 2017 by Peter K. Joshi ORCID, Nicola Pirastu ORCID, Katherine A. Kentistou, Krista Fischer, Edith Hofer, Katharina E. Schraut, David W. Clark, Teresa Nutile, Catriona L. K. Barnes, Paul R. H. J. Timmers, Xia Shen ORCID, Ilaria Gandin, Aaron F. McDaid ORCID, Thomas Folkmann Hansen ORCID, Scott D. Gordon and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractGenomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents’ survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.