Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Organometallics, 22(30), p. 6067-6070, 2011

DOI: 10.1021/om201008k

Links

Tools

Export citation

Search in Google Scholar

Electronic Selectivity Tuning in Titanium(III)-Catalyzed Acetylene Cross-Dimerization Reactions

Journal article published in 2011 by Gennady V. Oshovsky, Bart Hessen, Joost N. H. Reek, Bas de Bruin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reactivity of open-shell titanium(III) complexes in organometallic catalysis is associated with many open questions, in particular regarding the electronic structure of catalytic intermediates and transition states. The unpaired electron density in principle allows for radical-type reactivity, while at the same time empty d orbitals allow more traditional cis-coordination insertion pathways. In this paper we investigated the (Cp*)2TiIII-catalyzed cross-dimerization of aliphatic and aromatic acetylenes, focusing on the reactivity of two different aliphatic acetylenes with a series of different aromatic acetylenes. The applied aliphatic acetylenes 1a (4-methylpent-1-yne) and 1b (N,N-dimethyl-N-propargylamine) have the same size but different electron-accepting abilities. The better π-accepting substrate 1b shows a higher reactivity and selectivity than substrate 1a in the studied cross-dimerization reactions. Stronger π back-donation from the titanium-localized SOMO to the substrate thus seems to be a reasonable explanation for the improved selectivity of substrate 1b. DFT calculations indeed suggest a stronger binding of substrate 1b as compared to that of 1a in the selectivity-determining steps of the reaction, thus leading to faster insertions and higher selectivities with substrate 1b.