Published in

Lippincott, Williams & Wilkins, Anesthesiology, 2(128), p. 352-360, 2018

DOI: 10.1097/aln.0000000000001989

Links

Tools

Export citation

Search in Google Scholar

Microvascular Permeability after an Acute and Chronic Salt Load in Healthy Subjects

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Sodium-induced microcirculatory changes, endothelial surface layer alterations in particular, may play an important role in sodium-mediated blood pressure elevation. However, effects of acute and chronic sodium loading on the endothelial surface layer and microcirculation in humans have not been established. The objective of this study was to assess sodium-induced changes in blood pressure and body weight as primary outcomes and also in microvascular permeability, sublingual microcirculatory dimensions, and urinary glycosaminoglycan excretion in healthy subjects. Methods Twelve normotensive males followed both a low-sodium diet (less than 50 mmol/day) and a high-sodium diet (more than 200 mmol/day) for eight days in randomized order, separated by a crossover period. After the low-sodium diet, hypertonic saline (5 mmol sodium/liter body water) was administered intravenously in 30 min. Results Both sodium interventions did not change blood pressure. Body weight increased with 2.5 (95% CI, 1.7 to 3.2) kg (P < 0.001) after dietary sodium loading. Acute intravenous sodium loading resulted in increased transcapillary escape rate of 125I-labeled albumin (2.7 [0.1 to 5.3] % cpm · g−1 · h–1; P = 0.04), whereas chronic dietary sodium loading did not affect transcapillary escape rate of 125I-labeled albumin (−0.03 [−3.3 to 3.2] % cpm · g−1 · h–1; P = 1.00), despite similar increases of plasma sodium and osmolality. Acute intravenous sodium loading coincided with significantly increased plasma volume, as assessed by the distribution volume of albumin, and significantly decreased urinary excretion of heparan sulfate and chondroitin sulfate. These changes were not observed after dietary sodium loading. Conclusions Our results suggest that intravenous sodium loading has direct adverse effects on the endothelial surface layer, independent of blood pressure.