Published in

American Scientific Publishers, Journal of Nanoscience and Nanotechnology, 12(18), p. 8386-8391

DOI: 10.1166/jnn.2018.16401

Links

Tools

Export citation

Search in Google Scholar

Green Synthesis of Silver Nanoparticles Using Jurinea dolomiaea and Biological Activities

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Green syntheses of nanoparticles using plant materials are of tremendous scope. Here we report advantageous green synthesis for silver nanoparticles (AgNPs) using aqueous-root extract of Jurinea dolomiaea and AgNO3. Color change of solution and UV-Vis absorption at 444 nm indicated the formation of AgNPs. XRD confirmed their face centered cubic structure (fcc) with average particle size of 24.58 nm. SEM analysis showed their spherical, cubic and triangular structures. FT-IR indicated the presence of functional groups of reducing and stabilizing phytochemicals. Methanol-root extract of J. dolomiaea revealed high flavonoid (445 mg RE/g) and phenolic contents (92 mg GAE/g). Methanol-extract showed high antioxidant potency (IC50 = 0.494 μg/mL), rationally due to its high phenolic and flavonoid contents. These AgNPs showed the highest and equal antimicrobial activities against Escherichia coli and Pseudomonas aeruginosa (Inhibition zone 11.0 mm) whereas, methanol-roots extract showed equal and intermediate activities (Inhibition zone 8.0 mm) against both pathogens but aqueous extract showed poor activities (Inhibition zone 6.0 mm) against these both pathogens. AgNPs are playing a major role in the field of nanotechnology and nanomedicine due to their antimicrobial and drug delivery efficacy as well as reasonable tolerance in human biology.