Published in

Cambridge University Press, European Psychiatry, (40), p. 33-37

DOI: 10.1016/j.eurpsy.2016.06.008

Links

Tools

Export citation

Search in Google Scholar

Brain-derived Neurotrophic Factor (BDNF) and gray matter volume in bipolar disorder

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIntroductionBipolar Disorder (BD) is a severe psychiatric condition characterized by grey matter (GM) volumes reduction. Neurotrophic factors have been suggested to play a role in the neuroprogressive changes during the illness course. In particular peripheral brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in BD. The aim of our study was to investigate if serum levels of BDNF are associated with GM volumes in BD patients and healthy controls (HC).MethodsWe studied 36 inpatients affected by a major depressive episode in course of BD type I and 17 HC. Analysis of variance was performed to investigate the effect of diagnosis on GM volumes in the whole brain. Threshold for significance was P < 0.05, Family Wise Error (FWE) corrected for multiple comparisons. All the analyses were controlled for the effect of nuisance covariates known to influence GM volumes, such as age, gender and lithium treatment.ResultsBD patients showed significantly higher serum BDNF levels compared with HC. Reduced GM volumes in BD patients compared to HC were observed in several brain areas, encompassing the caudate head, superior temporal gyrus, insula, fusiform gyrus, parahippocampal gyrus, and anterior cingulate cortex. The interaction analysis between BDNF levels and diagnosis showed a significant effect in the middle frontal gyrus. HC reported higher BDNF levels associated with higher GM volumes, whereas no association between BDNF and GM volumes was observed in BD.DiscussionOur study seems to suggest that although the production of BDNF is increased in BD possibly to prevent and repair neural damage, its effects could be hampered by underlying neuroinflammatory processes interfering with the neurodevelopmental role of BDNF.