Published in

American Diabetes Association, Diabetes, 11(67), p. 2410-2419, 2018

DOI: 10.2337/db17-1212

Links

Tools

Export citation

Search in Google Scholar

Glucagon-Like Peptide-1 and its Cleavage Products are Renoprotective in Murine Diabetic Nephropathy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based GLP-1 receptor agonists nor DPP-4 inhibitors were found to reduce cardiovascular events. This different response might relate to GLP-1 receptor-independent actions of GLP-1 caused by cleavage products only liberated by GLP-1 receptor agonists with close peptide structure to GLP-1. To test this hypothesis, we directly compared metabolic, renal, and cardiac effects of GLP-1 and its cleavage products in diabetic db/db mice. Using an adeno-associated viral vector system, we overexpressed DPP-4-resistant GLP-1 (7-37 Mut8) and the two GLP-1 cleavage products, GLP-1 (9-37) and GLP-1 (28-37), in diabetic db/db mice. Only GLP-1 (7-37 Mut8), but none of the cleavage products, significantly improved glucose metabolism. Still, all GLP-1 constructs significantly reduced tubulointerstitial renal damage, lowered expression of the tubular injury markers, and attenuated renal accumulation of macrophages and T cells. This was associated with a systemic immunomodulatory effect, which was similarly found in an acute renal ischemia/reperfusion injury model. In conclusion, GLP-1 cleavage products proved sufficient to mediate organ-protective effects, which might help to explain differences between GLP-1 receptor agonists.