Published in

American Association of Immunologists, The Journal of Immunology, 4(201), p. 1241-1252, 2018

DOI: 10.4049/jimmunol.1800314

Links

Tools

Export citation

Search in Google Scholar

Role of Peptidylarginine Deiminase 4 in Neutrophil Extracellular Trap Formation and Host Defense during Klebsiella pneumoniae–Induced Pneumonia-Derived Sepsis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Peptidylarginine deiminase 4 (PAD4) catalyzes citrullination of histones, an important step for neutrophil extracellular trap (NET) formation. We aimed to determine the role of PAD4 during pneumonia. Markers of NET formation were measured in lavage fluid from airways of critically ill patients. NET formation and host defense were studied during pneumonia-derived sepsis caused by Klebsiella pneumoniae in PAD4+/+ and PAD4−/− mice. Patients with pneumosepsis, compared with those with nonpulmonary disease, showed increased citrullinated histone 3 (CitH3) levels in their airways and a trend toward elevated levels of NET markers cell-free DNA and nucleosomes. During murine pneumosepsis, CitH3 levels were increased in the lungs of PAD4+/+ but not of PAD4−/− mice. Combined light and electron microscopy showed NET-like structures surrounding Klebsiella in areas of CitH3 staining in the lung; however, these were also seen in PAD4−/− mice with absent CitH3 lung staining. Moreover, cell-free DNA and nucleosome levels were mostly similar in both groups. Moreover, Klebsiella and LPS could still induce NETosis in PAD4−/− neutrophils. Both groups showed largely similar bacterial growth, lung inflammation, and organ injury. In conclusion, these data argue against a major role for PAD4 in NET formation, host defense, or organ injury during pneumonia-derived sepsis.