Published in

Nature Research, Nature, 7253(460), p. 410-413, 2009

DOI: 10.1038/nature08079

Links

Tools

Export citation

Search in Google Scholar

Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cohesin-mediated sister chromatid cohesion is essential for chromosome segregation and post-replicative DNA repair1,2. In addition, evidence from model organisms3-6 and from human genetics7 suggests that cohesin plays a role in the control of gene expression8,9. This non-canonical role has recently been rationalized by the findings that mammalian cohesin complexes are recruited to a subset of DNase I hypersensitive sites (HSS) and to conserved non-coding sequences by the DNA binding protein CTCF10-13. CTCF functions at insulators (which control interactions between enhancers and promoters) and at boundary elements (which demarcate regions of distinct chromatin structure)14, and cohesin contributes to CTCF’s enhancer blocking activity10,11. The underlying mechanisms remain unknown, and the full spectrum of cohesin functions remains to be elucidated. Here we show that cohesin forms the topological and mechanistic basis for cell type-specific long-range chromosomal interactions in cis at the developmentally regulated cytokine locus IFNG. Hence, cohesin’s ability to constrain chromosome topology is utilized not only for the purpose of sister chromatid cohesion1,2, but also to dynamically define the spatial conformation of specific loci. This novel aspect of cohesin function is likely of importance to normal development3-6 and to disease7.