Published in

Oldenbourg Verlag, Radiochimica Acta, 12(104), p. 905-913, 2016

DOI: 10.1515/ract-2016-2598

Links

Tools

Export citation

Search in Google Scholar

Silver-based getters for 129I removal from low-activity waste

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract A prominent radionuclide of concern in nuclear wastes, 129I, is present in low-activity wastes (LAW) at the Hanford site. Several Ag-containing materials were tested as immobilization agents, or “getters”, for I (as iodide, I) removal from deionized (DI) water and a liquid LAW simulant: Ag impregnated activate carbon (Ag–C), Ag exchanged zeolite (Ag–Z), and argentite. In anoxic batch experiments with DI water, the Ag–C and argentite were most effective, with maximum Kd values of 6.2 × 105 mL/g for the Ag–C and 3.7 × 105 mL/g for the argentite after 15 days. Surface area and Ag content were found to influence the performance of the getters in DI water. In the anoxic batch experiments with LAW simulant, Ag–Z vastly outperformed the other getters with Kd values of 2.2 × 104 mL/g at 2 h, which held steady until 15 days, compared with 1.8 × 103 mL/g reached at 15 days by the argentite. All getters were stable over long periods of time (i.e. 40 days) in DI water, while the Ag–Z and argentite were also stable in the LAW simulant. Ag–Z was found to have consistent I removal upon crushing to a smaller particle size and in the presence of O2, making it a strong candidate for the treatment of LAW containing I.