Published in

Thieme Gruppe, Journal of Pediatric Infectious Diseases, 03(13), p. 216-223

DOI: 10.1055/s-0038-1641603

Links

Tools

Export citation

Search in Google Scholar

Real-Time PCR Assay for Detection of Kingella kingae in Children

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background Kingella kingae is a known cause of osteoarticular infections in children younger than 4 years of age, but it is not always recoverable in culture. Molecular methods are increasingly used for diagnosis. Methods To facilitate diagnosis of K. kingae septic arthritis, we developed a real-time polymerase chain reaction (PCR) assay for the detection of K. kingae that targets the repeat-in-toxin gene (rtxB). Results We present three pediatric patients with K. kingae septic arthritis at our institution who were diagnosed using the real-time PCR assay. All underwent arthrotomy with irrigation and debridement and were symptom-free after 3 weeks of therapy with β-lactam antibiotics. Cultures of synovial fluid or tissue grew K. kingae in two of three; K. kingae real-time PCR was positive in all three patients. In addition, 11 cases of K. kingae osteoarticular infection were diagnosed through Mayo Medical Laboratories using this assay. The limit of detection of the real-time PCR assay was 73.7 colony-forming unit (CFU)/µL for tissue and 1.3 CFU/µL for synovial fluid. Conclusions PCR-based detection methods are faster and more sensitive than conventional culture-based methods for the diagnosis of K. kingae osteoarticular infections in children.