Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-13719-z

Links

Tools

Export citation

Search in Google Scholar

Invariant nature of substituted element in metal-hexacyanoferrate

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe chemical substitution of a transition metal (M) is an effective method to improve the functionality of materials. In order to design the highly functional materials, we first have to know the local structure and electronic state around the substituted element. Here, we systematically investigated the local structure and electronic state of the host (Mh) and guest (Mg) transition metals in metal-hexacyanoferrate (M-HCF), Na x (Mh, Mg)[Fe(CN)6] y (1.40 < x < 1.60 and 0.85 < y < 0.90), by means of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) analyses. The EXAFS and XANES analyses revealed that the local structure and electronic state around Mg are essentially the same as those in the pure compound, i.e, Mg-HCF. Such an invariant nature of Mg in M-HCF is in sharp contrast with that in layered oxide, in which the Mg valence changes so that local Mg-O distance (d M-Og) approaches the Mh-O distance (d M-Oh).