Published in

American Association for the Advancement of Science, Science Signaling, 198(4), 2011

DOI: 10.1126/scisignal.2001993

Links

Tools

Export citation

Search in Google Scholar

Systematic Phosphorylation Analysis of Human Mitotic Protein Complexes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Progression through mitosis depends on a large number of protein complexes that regulate the major structural and physiological changes necessary for faithful chromosome segregation. Most, if not all, of the mitotic processes are regulated by a set of mitotic protein kinases that control protein activity by phosphorylation. Although many mitotic phosphorylation events have been identified in proteome-scale mass spectrometry studies, information on how these phosphorylation sites are distributed within mitotic protein complexes and which kinases generate these phosphorylation sites is largely lacking. We used systematic protein-affinity purification combined with mass spectrometry to identify 1818 phosphorylation sites in more than 100 mitotic protein complexes. In many complexes the phosphorylation sites were concentrated on a few subunits, suggesting that these subunits serve as “switchboards” to relay the kinase-regulatory signals within the complexes. Consequent bioinformatic analyses identified potential kinase – substrate relationships for most of these sites. In a subsequent in-depth analysis of key mitotic regulatory complexes using the Aurora kinase B (AURKB) inhibitor Hesperadin and a new Pololike kinase (PLK1) inhibitor, BI 4834, we determined the kinase-dependency for 172 phosphorylation sites on 41 proteins. Combination of the results of the cellular studies with Scansite motif prediction enabled us to identify 14 sites on 6 proteins as direct candidate substrates of AURKB or PLK1.