Published in

Cambridge University Press, Quaternary Research, p. 1-17

DOI: 10.1017/qua.2018.47

Links

Tools

Export citation

Search in Google Scholar

Loess–paleosol carbonate clumped isotope record of late Pleistocene–Holocene climate change in the Palouse region, Washington State, USA

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Channeled Scabland–Palouse region of the Pacific Northwest (PNW) of the United States preserves geomorphic and pedosedimentary records that inform understanding of late Pleistocene–Holocene paleoclimate change in a region proximal to the last glacial period Cordilleran Ice Sheet. We present a clumped (Δ47) and conventional (δ18O, δ13C) isotopic study of Palouse loess–paleosol carbonates in combination with carbonate radiocarbon (14C) dating to provide new measures of regional late–last glacial (~31–20 cal ka BP) and Holocene soil conditions. Average clumped isotope temperatures (T(Δ47)) for last glacial Palouse loess–paleosol carbonates (9±4°C) are significantly lower than those for Holocene-aged carbonates (T(Δ47)=18±2°C) in study sections. Calculated soil water δ18OVSMOWvalues (−16±2‰) for last glacial carbonates are also offset relative to those for Holocene-aged samples (−11±1‰), whereas calculated soil CO2δ13CVPDBvalues are similar for the Holocene (−16.9±0.2‰) and late–last glacial (−16.7±1.1‰) periods. Together, these paleoclimate metrics indicate late–last glacial conditions of pedogenic carbonate formation in the C3grassland soils of the Palouse were measurably colder (9±5°C) than during the Holocene and potentially reflect a more arid last glacial paleoclimate across the Palouse, findings in agreement with previous proxy studies and climate model simulations for the region.