The Royal Society, Philosophical Transactions of the Royal Society B: Biological Sciences, 1727(372), p. 20160236, 2017
Full text: Unavailable
Low-oxygen areas are expanding in the oceans as a result of climate change. Work carried out during the past two decades suggests that, in addition to impairing basic physiological functions, hypoxia can also affect fish behaviour. Given that many fish species are known to school, and that schooling is advantageous for their survival, the effect of hypoxia on schooling behaviour may have important ecological consequences. Here, we review the effects of hypoxia on school structure and dynamics, together with the mechanisms that cause an increase in school volume and that ultimately lead to school disruption. Furthermore, the effect of hypoxia generates a number of trade-offs in terms of schooling positions and school structure. Field observations have found that large schools of fish can exacerbate hypoxic conditions, with potential consequences for school structure and size. Therefore, previous models that predict the maximum size attainable by fish schools in relation to oxygen levels are also reviewed. Finally, we suggest that studies on the effect of hypoxia on schooling need to be integrated with those on temperature and ocean acidifications within a framework aimed at increasing our ability to predict the effect of multiple stressors of climate change on fish behaviour.This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’.